i:;l?é electronics

Review

A Brief Review

and Challenges

Ruicheng Gao ! and Yue Qi

check for
updates

Citation: Gao, R.; Qi, Y. A Brief
Review on Differentiable Rendering:
Recent Advances and Challenges.
Electronics 2024, 13, 3546. https://
doi.org/10.3390/electronics13173546

Academic Editor: Beiwen Li

Received: 19 August 2024
Revised: 1 September 2024
Accepted: 3 September 2024
Published: 6 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

on Differentiable Rendering: Recent Advances

2,1,3,%

State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and
Engineering, Beihang University, Beijing 100191, China

Jingdezhen Research Institute of Beihang University, Jingdezhen 333000, China

Qingdao Research Institute of Beihang University, Qingdao 266104, China

* Correspondence: qy@buaa.edu.cn

Abstract: Differentiable rendering techniques have received significant attention from both industry
and academia for novel view synthesis or for reconstructing shapes and materials from one or multiple
input photographs. These techniques are used to propagate gradients from image pixel colors back
to scene parameters. The obtained gradients can then be used in various optimization algorithms
to reconstruct the scene representation or can be further propagated into a neural network to learn
the scene’s neural representations. In this work, we provide a brief taxonomy of existing popular
differentiable rendering methods, categorizing them based on the primary rendering algorithms
employed: physics-based differentiable rendering (PBDR), methods based on neural radiance fields
(NeRFs), and methods based on 3D Gaussian splatting (3DGS). Since there are already several reviews
for NeRF-based or 3DGS-based differentiable rendering methods but almost zero for physics-based
differentiable rendering, we place our main focus on PBDR and, for completeness, only review several
improvements made for NeRF and 3DGS in this survey. Specifically, we provide introductions to
the theories behind all three categories of methods, a benchmark comparison of the performance
of influential works across different aspects, and a summary of the current state and open research
problems. With this survey, we seek to welcome new researchers to the field of differentiable
rendering, offer a useful reference for key influential works, and inspire future research through our
concluding section.

Keywords: differentiable rendering; analysis-by-synthesis; global illumination; neural radiance field;
3D Gaussian splatting

1. Introduction

Differentiable rendering techniques have emerged as a popular research topic in
the areas of virtual/augmented reality, computer vision, and computer graphics. The
rendering process can be understood as a function that maps the parameters of geometries,
materials, lights, and cameras to the image pixels’ intensities; i.e., the data flows from scene
parameters to image pixels. On the contrary, differentiable rendering techniques aim to
propagate the gradients of image pixels to the scene parameters in the opposite direction;
i.e., the data flows from image pixels to scene parameters.

The gradients obtained through differentiable rendering techniques can be paired with
various optimization algorithms to solve inverse-rendering (also known as analysis-by-
synthesis) problems such as reflectance and lighting estimation [1] and 3D reconstruction
from one or multiple input photographs [2,3]. The gradients can also be propagated further
into neural networks to learn the scene’s neural representations [4], enabling applications
such as novel view synthesis [5,6], scene relighting [7], and scene editing [8].

When we have challenging inverse rendering problems at hand, high-quality gradients
are required to ensure that the corresponding optimization process converges to a valid

Electronics 2024, 13, 3546. https:/ /doi.org/10.3390/ electronics13173546

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13173546
https://doi.org/10.3390/electronics13173546
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13173546
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13173546?type=check_update&version=2

Electronics 2024, 13, 3546

2 of 26

result. Note that the differentiable rendering techniques we use to obtain gradients are
largely determined by the primary rendering process. Therefore, high-quality gradients
come from a high-quality primary rendering process, and the rendering algorithms of the
highest quality are undoubtedly global illumination algorithms.

Global illumination algorithms, obeying the rules of geometric optics, use Monte Carlo
methods to solve the path integral and then render photorealistic images. However, the dif-
ferentiable rendering techniques corresponding to global illumination algorithms, known
as physics-based differentiable rendering methods [9-11], are much more complicated due
to the high-order discontinuities contained in the integrand of the path integral, which
combines the parameters of geometries, materials, lights, and cameras into a single entity.

Directly applying automatic differentiation techniques to global illumination algo-
rithms will not yield physically correct gradients. Just like the Leibniz integral rule in
calculus, the derivative of the path integral contains an additional boundary term due to
the movement of discontinuities when the scene’s geometric parameters change.

There are two main methods to handle the movement of geometric discontinuities
in the physics-based differentiable rendering community: boundary sampling meth-
ods [9,11-14] and reparameterization methods [10,15,16]. Boundary sampling methods aim
to explicitly calculate the boundary term by importance sampling paths in the boundary
sample space. Reparameterization methods, on the other hand, aim to avoid explicitly
sampling boundary paths. They reparameterize the integral domain by tracing auxil-
iary rays such that the geometric discontinuities remain static when scene parameters
change. Then, automatic differentiation techniques can be applied to obtain the physically
correct gradients.

The main drawbacks of physics-based differentiable rendering techniques are the
relatively long time required to obtain a low-variance estimate of the gradients and the
significantly more complex theory compared to other local illumination-based techniques.

The volume-rendering-based method, NeRF [5], is such a technique that ignores scat-
tering in participating media, retaining only emission and absorption. NeRF-like methods
represent scenes using a volume function in the form of neural networks and render this
volume using traditional volume rendering methods, except that they now obtain samples
through neural networks. The original NeRF exhibits a series of inefficiencies, such as slow
rendering speeds that also hinder the training process [17] and poor generalization to new
scenes [18]. Many algorithms have been proposed to address these inefficiencies.

Inspired by the idea of representing scenes using volumes, 3D Gaussian splatting
(8DGS) [6] has been proposed, which uses a discrete set of 3D Gaussians as base primitives.
By avoiding queries to a neural network and leveraging the advantageous projection
properties of 3D Gaussians, this technique achieves much higher rendering frame rates,
which also accelerates the training process a lot. The main shortcomings of 3DGS include
the large storage space required [19] and the difficulty in converting the discrete scene
representation into more editable meshes [20].

This paper is organized as follows: In Section 2, classification based on the primary
rendering algorithms employed is presented. Next, the physics-based differentiable ren-
dering methods, NeRF-like methods, and methods based on 3DGS are introduced and
analyzed in Section 3, Section 4 and Section 5, respectively. In Section 7, the conclusions
and open research problems are presented.

2. Algorithms

From the perspective of the primary rendering algorithms used, we provide a brief
taxonomy of existing differentiable rendering methods, as illustrated in Figure 1. Note
that we provide only a coarse taxonomy here, which is sufficient for the topics covered
in this paper, i.e., physics-based, NeRF-based, and 3DGS-based differentiable rendering.
Moreover, we list the representative works in these categories in Figure 2.

Besides NeRF-like methods, there are many other approaches included in the “neural-
network-based” branch in Figure 1, such as [21-24], which are based on voxel or point

Electronics 2024, 13, 3546 3 0of 26

cloud representations. Under the “rasterization-based” branch, there are also many other
techniques that are based on traditional rasterizers, such as [25,26]. A survey of these
methods goes beyond the scope of this paper, as well.

Differentiable rendering

Global illumination Local illumination

Boundary sampling ‘ Reparameterization Neural-network-based ‘ Rasterization-based

B —

%?

Figure 1. A brief taxonomy of existing differentiable rendering methods. Figures come from [5,6,10,11].

Boundary sampling methods: Li et al. 2018, Zhang et al. 2020, Zhang et al. 2023
(* Physics-based
Reparameterization methods: Loubet et al. 2019, Bangaru et al. 2020, Xu et al. 2023

(" Lower Acquisition Costs: DS-NeRF 2022, PixelNeRF 2021, FreeNeRF 2023

< NeRE-based < Faster Rendering Speeds: Mobile-NeRF 2023, DIVeR 2022, Instant-NGP 2022

Better Generalization: IBRNet 2021, NeRFusion 2022, Point-NeRF 2022
.

Differentiable rendering

1 Quality Enhancement: Mip-Splatting 2023, VDGS 2023, RadSplat 2024

| 3DGS-based < Data Compression: Scaffold-GS 2024, EAGLES 2023, Compact3D 2023

Geometry Reconstruction: SuGaR 2024, 2DGS 2024
.

Figure 2. Selected representative works in the area of differentiable rendering [9-11,14-16,18-20,27-40].

We start with the most elaborate formula used in primary rendering algorithms and
classify the review topics covered in this paper based on how they relate to this formula.
The formula is the equation of transfer that governs the behavior of light in participating
media containing surfaces:

D
Lilp.w) = [T = pox(p)) [P @)Li(p,) dedt + La(p,o) ()

where L;(p, w) is the incoming radiance at point p in direction w, T is the beam transmit-
tance, which is the fraction of radiance transmitted between two points, D is the distance
from point p to the medium’s boundary in the direction of —w, o5 is the medium’s scatter-
ing coefficient, P is the phase function, which describes the angular distribution of scattered
radiation at a point, and L; is the source term defined by:

D
Li(p.w) = [T = poa(p)LE(p,)t +

(2)
To(po = p)L [, Fpo. e,)Lilpo,) deo’ + L (po,)]

where o, is the absorption coefficient, L? is the medium’s radiant emission, pg is the

intersection point where the ray originating from point p and traveling in direction —w

meets the medium’s boundary, f is the cosine-weighted BSDF, and L} is the interfacially

emitted radiance.

Electronics 2024, 13, 3546

4 of 26

The formulas above take both volume scattering and surface interactions into account
and are the basis of the physics-based differentiable rendering techniques that will be
reviewed in Section 3. If we ignore the contributions from surface interactions and scattering
in participating media, the resulting volume rendering formula is:

Li(p,w) = /Tr<P’ = p)Le(p/, —w)at’ 3)

which forms the basis of NeRF-like methods and will be reviewed in Section 4. If the scene
representation we use is no longer volumetric but is instead based on discrete points, then
the aforementioned formula can be rewritten as follows:

Li(p,w) = ; Tr(pi = p)Le(pi, —w))

We can further rewrite the above formula by utilizing the property of the beam transmit-
tance term T;:

T(p—=p")=T(p = pP)T(p = p") ®)
Then we can obtain:

Li(p,w) =Y 1 To(pj = pj-1)Le(pi, —w)
im1j=1 (6)

= a1 (Le(p1, —w) + a2 (Le(p2, —w) + - 4+ an - Le(pn, —w)))

where we replace the transmittance term T, (p; — p;_1) with the alpha blending coefficients
a;. Then we obtain the formula utilized by 3DGS methods, which will be reviewed in
Section 5.

3. Physics-Based Differentiable Rendering

Physics-based forward rendering aims to synthesize photorealistic images by sim-
ulating light transport in a manner consistent with physical laws using Equation (1). In
contrast, physics-based differentiable rendering aims to propagate the derivatives of image
pixels back to the scene parameters, which is a challenging problem due to the high-order
discontinuities inherent in the scene function. With the gradients of these scene parameters,
one of the most important applications of PBDR is inverse rendering, i.e., reconstructing
geometries, materials, or emitters from a set of input photographs, as illustrated in Figure 3.

Note that there are several works [12,13] using the full form of Equation (1), but the
main difficulties encountered in PBDR arise from the rendering part that involves geometric
surfaces. The rendering part involving participating medjia is fully continuous and thus can
be differentiated easily. Therefore, we will focus on scenes comprised entirely of surfaces.
In the following subsections, we will first briefly introduce the theory behind physics-based
rendering. Then, we will discuss two categories of methods in PBDR, which are classified
based on their approach to handling discontinuities: boundary sampling methods and
reparameterization methods.

Scene

Initial geometry Final geometry Reference geometry

HAND

EiGHT

Figure 3. Reconstruction of geometry from one photograph by [14].

Electronics 2024, 13, 3546

50f 26

3.1. Physics-Based Rendering Preliminaries

Since the main difficulties in PBDR arise from geometric surfaces rather than the partic-
ipating media, we will focus exclusively on scenes comprised entirely of surfaces. Adding
participating media back is straightforward [12,13], as the corresponding rendering part is
continuous. Ignoring the participating media term in Equation (1) gives the rendering equation:

Lo(pw) = [f(p, ', @)Li(p,) deo’ + Li(p,0) @)

which describes the local behavior of light, such as the reflection or transmission, at a
point on the geometric surface. The above equation can be solved by iteratively replacing
Li(p, ') in the right-hand side with the function in the left-hand side. The final solution
can be expressed as a Neumann series: L; =) {_; Py where Py stand for the radiance
contribution from paths of length N:

Pn(p,wo) = /

F(p,wy, ..., wn_1)dwn_q1 - dw 8
2 (p,wo N-1)dwn_1 1 (8)

The resulting radiance function L; is then convolved with a pixel reconstruction filter
function to obtain the final intensity of pixel j:

I = / / hj(x,y)Li(x,y)dxdy ©)

The rendering equation can also be expressed as a surface form or an integral on object surfaces:

L(p,p') = Le(p,p') + //;f(p, p, ")L, p")G(p', p")dA(p") (10)

where G(+, -) is the geometric term. Expanding the formula again, we obtain the widely
used path integral:

Pn(p,po) = /

F(P/ Pos - PN*l)dAPN—l o 'dAlf’l (11)
Ax-xA

Given the physics-based rendering formulas above, we still need a numerical integra-
tion method to calculate the corresponding integrals. Since these integrals tend to be very
high-dimensional, Monte Carlo methods are preferred over other numerical integration
methods. Specifically, Monte Carlo methods use random numbers to evaluate the integral:

1= [fx)dn) (12)

Employing the Monte Carlo estimator, we have:

i 1 (X))
=N L) o
Note that the points Xj, ..., Xy need to be sampled according to the probability density
function p(x). In practice, to make the Monte Carlo estimator converge as quickly as
possible, we need to match the shape of p(x) with that of f(x) as closely as possible.

With these tools at hand, the next task is to calculate the corresponding differentials.
However, automatic differentiation techniques cannot be applied directly due to the discon-
tinuities in the integrand of Equations (8), (9) and (11). Based on how the discontinuities
in these high-dimensional integrals are handled, existing PBDR methods can be classified
into two categories: boundary sampling methods and reparameterization methods, which
will be reviewed in the following subsections.

When comparing the performance of two PBDR methods, the commonly used metrics
are the variance of the Monte Carlo estimators and the rendering time in seconds; notably,

Electronics 2024, 13, 3546

6 of 26

there are generally no common datasets used in the field of PBDR, as the scenes for
comparison are typically built by the authors themselves.

3.2. Boundary Sampling Methods

Li et al. [9] presented the first physics-based differentiable rendering technique for
scenes composed of triangle meshes using an edge sampling method. They realized that
the automatic differentiation technique cannot be used directly to compute the gradient of
pixel intensity resulting from global illumination techniques such as path tracing due to
the discontinuity of the integrand. The Heaviside step function is utilized to partition the
discontinuous integrand into many small parts, ensuring that the corresponding function
is continuous within each small domain. Then, the pixel intensity I can be written as:

1= [[Sottx) fixy) dxdy (14)

where f;(x,y) is the scene function, 6(-) is the Heaviside step function, «;(x,y) is the
edge equation corresponding to the discontinuity’s location in the scene function, and the
summation is over the subdivided small domains.

Recall that the derivative of the Heaviside step function is the Dirac delta function, so
the derivative of pixel intensity I with respect to scene parameter 7t can be written as:

= [S0y o fily) + 8(asl) Vesto) fioy) dxdy —(5)

where J(-) is the Dirac delta function.

A 2D integral containing the Dirac delta function in the integrand is actually a 1D
integral over the domains where the Dirac delta function has non-zero values, so the first
physically correct formula for the derivative of the pixel intensity is obtained as follows:

52 =] axfenaxay+ L [1< o i) (16)

where the second integral is over the triangle edges corresponding to the discontinuity’s
location in the scene function.

For scenes composed of triangle meshes, the edges that cause discontinuities in the
scene function come from three sources, as shown in Figure 4. The boundary edges belong
to the topological boundary of the triangle mesh. If the mesh has no topological boundary,
i.e., it is closed, then it has no boundary edges that may contribute to the discontinuities
of the scene function. The silhouette edges correspond to the occlusion of one mesh over
another mesh or self-occlusion, causing the shading to change suddenly from one side of
the edge to the other. And the sharp edges result from the discontinuous face normals on
the mesh if smooth shading using interpolated normals is disabled.

-

(a) Boundary edges (b) Silhouette edges (c) Sharp edges

Figure 4. Three sources of triangle edges that cause discontinuities in the scene function by
Zhang et al. [12].

Electronics 2024, 13, 3546

7 of 26

Given the physically correct formula Equation (16) for obtaining gradients of pixel
colors rendered using global illumination algorithms, the next step is to design a Monte
Carlo estimator and an efficient importance sampling scheme to put the theory into practice.

To reduce the variance of the corresponding Monte Carlo estimator as much as possible,
the shape of the probability density function needs to closely match the shape of the
contribution function.

For the former part of Equation (16), traditional importance sampling methods such
as next-event estimation and multiple importance sampling techniques can be applied
directly. Recall that arbitrary long light paths need to be evaluated for global illumination
algorithms. Therefore, the contribution of the latter part of Equation (16) can be further
divided into two parts: one corresponding to the primary visibility, i.e., the first segment
of light paths, and the other corresponding to higher-order visibility, i.e., the subsequent
segments of light paths.

We can precompute all the triangle edges that may contribute to geometric disconti-
nuities and importance sample them for the primary visibility case. The main challenge
comes from the higher-order visibility case.

In this case, we need to importance sample geometric discontinuities viewed from
arbitrary shading points in the scene, which is a much more complicated task than the
primary visibility case.

Li et al. [9] employs a 6D Hough tree, which takes both vertex positions and normals
into account, for the importance sampling task. However, this pioneering importance
sampling scheme does not scale well to scenes with high complexity and does not match
the shape of the contribution function closely. This results in a Monte Carlo estimator with
relatively large variance.

A series of methods have been proposed to improve upon the above technique.
Zhang et al. [12] extends the edge sampling method to scenes that contain participat-
ing media, supporting arbitrary surface and volumetric configurations. However, their
approach remains confined to the framework of sampling edges from given shading points,
which is considered inefficient from a modern viewpoint.

The next milestone in the development of boundary sampling techniques is attributed
to the work of Zhang et al. [11]. They utilize a so-called transport relation that originated in
fluid mechanics to establish a mathematical framework that is used in modern techniques.
They also introduce a multi-directional form of the boundary integral, allowing for silhou-
ette paths to be generated “from the middle”, which significantly reduces the variance of
the gradient estimator with less computation time, as illustrated in Figure 5.

Zhang et al. (445s) § Li et al.. (28.65s)

Figure 5. Comparison of the effectiveness between algorithms from Zhang et al. [11] and Li et al. [9]
under an equal-sample configuration. Images in the left column visualize the overall scene configura-
tions. The method of Li et al. achieves lower variance with less computation time. The figures come
from [11].

Electronics 2024, 13, 3546 8 of 26

Zhang et al. [13] extends the aforementioned method to scenes containing participating
media. Yan et al. [41] employ adaptive data structures to guide the sampling process within
the boundary sample space. They also propose an edge-sorting algorithm to reorganize
the boundary sample space to further improve the sampling efficiency, as illustrated in
Figure 6. Zhang et al. [14] re-derive the local formulation of the perimeter and propose the
first local formulation of the interior. They also find that the calculation of the boundary
term can greatly benefit from information gathered during the interior term'’s simulation.
Specifically, they project the rays that intersect the shape that is being differentiated onto the
corresponding geometry boundary. Then, they calculate these projected rays’ contributions
to the boundary integral to initialize the guiding structure, thereby reducing the overall
variance, as illustrated in Figure 7.

Original

Original

Figure 6. Comparison of the effectiveness between algorithms from Yan et al. [41] and Zhang
et al. [11] under an equal-time configuration. The adaptive data structures employed by Yan et al. [41]
provide better exploration of the boundary sample space, resulting in lower variance for the gradient
estimates. Figures come from [41].

12

e - (‘,,_/\,L Y

D Y O

; & “ :
Sl EN

(\! Q\ (\!
0 Ul oo (XY

\

Yam e al. Zhamg et al,

)

-12

Rt

-12

Figure 7. Comparison of the effectiveness between algorithms from Zhang et al. [14] and Yan
et al. [41] under an equal-time configuration. The results show that the calculation of the boundary
integral can greatly benefit from the information gathered during the simulation of the interior term.
Figures come from [14].

Electronics 2024, 13, 3546

9 of 26

3.3. Reparameterization Methods

The main inefficiency of the edge sampling method proposed by Li et al. [9] arises
from the challenging task of importance sampling of geometric discontinuities viewed from
arbitrary shading points in the scene. Reparameterization methods instead try to avoid
sampling these discontinuities explicitly by reparameterizing the integral domain.

Recall that the pixel intensity I is the result of an integral that typically contains dis-
continuities due to the discontinuous visibility function. And the geometric discontinuities
move in the integral domain when the geometric parameter 7t changes.

The core idea of reparameterization methods can be understood as subdividing the
integral domain into small parts such that the scene function is continuous over each part
and then reparameterizing the scene function over each subdomain. Note that the boundary
of each small integral domain needs to match the moving geometric discontinuities to
ensure the validity of the reparameterization. Then, we can rewrite formula as follows:

= [, o o) dxdy 17)

where Q);(71) represents the subdivided subdomains whose boundaries match the move-
ment of the geometric discontinuities.
Suppose we have a change of the variables’ schemes at hand:

Fi(m) : Qi(m) = Qu(m); (x0,90) = (x,y) (18)

then we have:

d(x,
I(mr) = ;//Q]_(no)f(x(xoryo, 7),y (%0, Yo, ﬂ)/”)’a(iogg)’ dxo dy (19)

7

Although the discontinuities still exist in the integrand, they no longer move when the
geometric parameter 7 changes. Therefore, we can now apply automatic differentiation
techniques to compute the derivative of pixel intensities.

In practice, we need to trace many rays of arbitrary lengths to estimate the derivative.
This would result in a huge computational overhead if we explicitly subdivide the integral
domain for each ray segment. Therefore, all existing reparameterization methods propose
their own reparameterization schemes without knowing the boundaries of the subdomains
in Equation (19).

The first work in a series of reparameterization studies was proposed by Loubet
et al. [15]. They found that the movement of the geometric discontinuities in a small
spherical integral domain can be well-approximated with a simple spherical rotation trans-
form, as illustrated in Figure 8. For scene functions with large supports, they convolved
the function with a convolution kernel and used spherical rotations to approximate the
movement of geometric discontinuities within the small support of the kernel function
at the cost of increased variance.

w
AR®

~'< o

‘/V
\ , \\)

(a) Spherical rotation of directions (b) Convolutions if large support

Figure 8. (a) Use of spherical rotation to approximate the movement of geometric discontinuities
within a small spherical domain. (b) Use of spherical convolution to transform the large function
support case into a small support case by Loubet et al. [15].

Electronics 2024, 13, 3546

10 of 26

Given the small domain to reparameterize the convolved scene function, auxiliary
rays need to be emitted to determine the suitable changes of variables. The raw results
obtained through their reparameterization scheme exhibit high variance. Control variates
and partially correlated pairs of paths are used to reduce the overall variance.

The main drawback of this reparameterization method is that the final Monte Carlo
estimator is biased due to the approximation the authors used.

The first unbiased reparameterization method for physics-based differentiable render-
ing was proposed by Bangaru et al. [10]. To better understand their work, we need to go
further with Equation (19):

xo,yo,) 9of(x,y,m) O(x,y)
2// (7o) Ty Tam
d | d(xy) 20)
f(x0,v0, ﬂo)an 30, v0) dxo dyo

where we assume that the absolute value of the Jacobian determinant in Equation (19) is 1
when evaluated at 719, which is true in existing reparameterization methods.

By using the result in Magnus et al. [42], we can rewrite the derivative of the above
Jacobian determinant as the divergence of the underlying mapping;:

aI 7T " 8 X0, , 7T a X,
)y [AT Gy 20,
i . Qi(nﬂ) 7T T (21)
d(x,
f(x0,y0,70) V - (a y) dxo dyo
s
where V ;= & ny) is referred to as the warp field in the work of Bangaru et al. [10].

Instead of directly seeking suitable changes of variables, they choose to estimate
the warp field using a Monte Carlo estimator. Recall that to ensure the validity of the
reparameterization, the boundaries of subdomains (;(77) need to match the movement of
the geometric discontinuities. The same requirement applies to the induced warp field V.

Applying automatic differentiation techniques directly to the ray tracing process can
generate a warp field V(47¢") However, this warp field does not satisfy the above require-
ment in the case of silhouette edges. Imagine one object blocking another; the velocities
of the movements of the projections of the silhouette edges are actually determined by
the occluder. However, the warp field V(@) obtained through the ray tracing process is
determined entirely by the object being blocked.

To achieve valid reparameterization, an additional operation is needed to transform
v@irect) into a warp field that matches the movement of the silhouette edges.

Bangaru et al. [10] convolves the warp field V(#"¢) obtained through the ray tracing
process with a weight function w, which is estimated by tracing additional rays, to obtain

the final warp field:

V(filtered)() fQ/ v (direct) (w)dwl 22)
fQ, w,w')dw’
where the weight function w has the property:
(b)
hm ww?,w) = 5(|w® — w|) (23)

w20 [y w(w®), w') de’

where () is the Dirac delta function. After the convolution, we obtain a valid warp
field, and Equation (21) can be used to calculate the derivatives of scene parameters in
an unbiased way, as illustrated in Figure 9. Xu et al. [16] extend the above method to
more advanced primary Monte Carlo rendering techniques, such as bidirectional path

Electronics 2024, 13, 3546 11 of 26

tracing, based on a new formulation for reparameterized differential path integrals. They
also introduce a new distance function to further reduce the variance of the final gradient
estimator, as illustrated in Figure 10.

\ ‘7 A 7 hS 7
i A= —
w»

Comnfilg. Original FID wreff, Bamgeru et al, Loubet et al,

a.uﬁ

Config. Original »

& -

Figure 9. Comparison of the effectiveness between algorithms from Bangaru et al. [10] and Lou-
bet et al. [15]. Note that the results from Loubet et al. [15] exhibit high bias, while those from
Bangaru et al. [10] closely match the reference. Figures come from [10].

Original

Xl et al. Bangaru et al.

Figure 10. Comparison of the effectiveness between algorithms from Xu et al. [16] and Bangaru
et al. [10] under an equal-sample configuration. The results from Xu et al. [16] exhibit lower variance
due to the new formulation for reparameterized differential path integrals and the new distance
function proposed. Figures come from [16].

4. Neural Radiance Field

Compared to physics-based differentiable rendering techniques, which simulate light
transport between scene surfaces for every detail, neural radiance fields (NeRFs) [5] use
an approximate method to model the real world. Specifically, NeRF-like methods model
scenes primarily composed of 2D surfaces with participating media only. In these methods,
the rendering integral is completely continuous, so the hard-to-handle discontinuities
encountered in PBDR methods disappear. Due to the approximations used in NeRF-
like methods, the single-object reconstruction results do not achieve the same level of
precision as PBDR methods. However, thanks to these approximations, NeRF-like methods
can reconstruct scenes with many complex geometries or even wild scenes using a few
photographs—something that current PBDR methods cannot accomplish.

The core idea of NeRFs is to employ a neural network to implicitly represent the radi-
ance field of a three-dimensional scene. Specifically, NeRFs utilize a multilayer perceptron
(MLP) to map a pair of a position and direction to a color and volume density correspond-
ing to the emission term and absorption term in the participating media. Points along
the ray that originate from sensors are then sampled to calculate the rendering integral,
resulting in the final pixel intensity.

Electronics 2024, 13, 3546

12 of 26

NeRFs have successfully modeled scenes as radiance fields, enabling the synthesis
of high-quality images from new perspectives for scenes with complex geometries and
appearances. These representations have been rapidly extended and have been applied to
numerous graphics and vision tasks, including generative modeling, surface reconstruc-
tion, appearance editing, and motion capture. These advancements facilitate applications
in various fields such as robotics, autonomous navigation, scene inpainting [43], and
virtual/augmented reality.

In the following subsections, we will first briefly introduce the theory behind NeRFs.
Then, we will successively discuss the improvements made since the original NeRF work.
Note that there is an enormous amount of research focusing on improving NeRF in various
aspects such as view synthesis under fuzzy input conditions [44], thin structures [45],
reconstruction of outdoor scenes [46], drone-captured scenes [47], large-scale scenes [48],
and RGB-D-captured scenes [49]. Since there are already thorough surveys of NeRF-
based methods [50-53], we will focus primarily on PBDR and only briefly review NeRF-
based methods from three aspects for completeness: lowering acquisition costs, increasing
rendering speeds, and enhancing generalization capabilities.

4.1. NeRF Preliminaries

The original NeRF represents a scene as a 5D vector-valued function described by the
following mapping;:
(c,0) = Fo(x,d) (24)

Here, x = (x,y,z) represents the 3D coordinates of a point in the scene, and d = (6, ¢) is
the camera’s viewing direction. The function outputs ¢ = (7, g, b), the color emitted by
the point x in direction d, and ¢, which is the volume density and is a quantity related to
absorption in the participating media. The function Fg is defined by a deep, fully connected
neural network known as multilayer perceptron (MLP). Specifically, the volume density ¢
is only related to the position x, whereas the color c is affected by both the position x and
the direction d. To help the neural network better capture and represent high-frequency
details in the scene, the position encoding technique [54] is used to map low-frequency
input coordinates to a high-dimensional space. In this way, NeRF is able to generate
high-quality and realistic images across different viewing angles by using the following
rendering process.

Given a ray passing through an image pixel in the world coordinate space, we use the
following integral to calculate the corresponding intensity:

Clr) = /t T (e (r()e(r (), d)dt (25)

where ,
T(t) = exp (— /tn U(r(S))dS) (26)

represents the fraction of energy retained when a photon travels from t, to t. Then, points
along the ray are sampled, and the corresponding color and volume density are obtained
through the neural network. The final pixel intensity is calculated using Equation (25). The
whole pipeline is illustrated in Figure 11.

When comparing the performance of two NeRF-based methods, commonly used
datasets include the DTU dataset [55] (carefully calibrated camera poses), LLFF dataset [56]
(handheld cellphone images), NeRF Synthetic dataset [5] (Blender-generated), Redwood
dataset [57] (over ten-thousand 3D scans), Mip-NeRF 360 dataset [58] (scenes containing
a complex central object), Tanks and Temples dataset [59] (high-quality laser-scanned
scenes), ICL-NUIM dataset [60] (synthetic indoor scenes), and ScanNet dataset [61] (over
2.5 million indoor scene views with semantic labels), while commonly used visual quality
assessment metrics include PSNR (an approximation of human perception of reconstruction

Electronics 2024, 13, 3546

13 of 26

quality), SSIM [62] (a measure of structural similarity), and LPIPS [63] (a measure based on
deep features).

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
12,0,
F» (32, ¢)—>|:||:||:|—>(RGBJ) \ _— i . /—\ .
-~ F, s D= e ||.-g.t.)

2

-g.t.

Figure 11. Overview of the NeRF rendering process: (a) select a series of sampling points along
camera rays, (b) output the color and volume density of the sampling points using the underlying
neural network, (c) calculate individual pixel colors via Equation (25), and (d) compare the predicted
image with the reference image and optimize the parameters of the underlying neural network.
Figures come from [5].

4.2. NeRF with Lower Acquisition Costs

Although a NeRF can synthesize high-quality images, it requires a large number of
images to learn the 3D structure and lighting information of a scene. If the number of input
views is insufficient, the NeRF may fail to fully capture the complex details and variations
of the scene, resulting in a decrease in the quality of the synthesized images.

DS-NeRF [27] achieves enhanced training efficiency and improved rendering quality
in sparse view settings by introducing a novel loss function for learning radiance fields that
takes advantage of readily available depth supervision. This approach utilizes the sparse 3D
points generated by structure-from-motion (SFM) as a source of “free” depth information.
During training, this additional supervision signal helps the model learn more accurate
scene geometries. A novel loss function is introduced to align the distribution of a ray’s
terminating depth with specified 3D keypoints, incorporating depth uncertainty to anchor
the learning process to the 3D geometry. The comparison results in Figures 12 and 13 and
Table 1 demonstrate that DS-NeRF delivers higher-quality view synthesis with fewer input
views. Note that the compared methods, MetaNeRF [64] and PixelNeRF [28], both use
data-driven priors recovered from a domain of training scenes to fill in missing information
from test scenes, allowing them to use fewer images to recover the scene.

DTU Redwood
3-view 6-view 9-view 2-view 5-view 10-view

metaNeRF
DTU NeRF

pixelNeRF
DTU

Figure 12. Comparison results of four methods—NeRF [5], MetaNeRF [64], PixelNeRF [28], and DS-
NeRF [27]—on the DTU [55] and Redwood [57] datasets with sparse input views. Note that DS-NeRF
performs the best, except on DTU when given 3 views. Figures come from [27].

Electronics 2024, 13, 3546

14 of 26

2-view 5-view 10-view

NeRF

metaNeRF

pixelNeRF
pretrained

pixelNeRF
-finetuned w/ DS

e

DS-NeRF

Figure 13. Comparison results of four methods—NeRF [5], MetaNeRF [64], PixelNeRF [28], and DS-
NeRF [27]—on the NeRF Synthetic dataset [5] with sparse input views. Note that DS-NeRF performs
the best in all cases. Figures come from [27].

RegNeRF [65] finds that errors in estimated scene geometry and the divergent behavior
at the start of training lead to lower rendering quality with sparse input views. The
authors then propose to regularize the geometry and appearance of patches rendered
from unobserved viewpoints to improve rendering quality. Additionally, a normalizing
flow model is used to regularize the color of unobserved viewpoints, which also plays an
important role in the final rendering results.

FreeNeRF [29] finds that frequency plays an important role in NeRF’s training un-
der the few-shot setting. This paper introduces an innovative frequency regularization
technique that significantly improves NeRF’s performance with fewer training views. The
core of the technique lies in two key regularization strategies: First, frequency regulariza-
tion controls the range of visible frequencies in NeRF’s input through a simple, linearly
increasing frequency mask. This prevents overfitting to high-frequency signals during the
early stages of training. Second, occlusion regularization mitigates the “floating artifacts”
in novel view synthesis by penalizing high-density regions near the camera, effectively
reducing these artifacts. The comparison results in Figures 14 and 15 and Table 2 demon-
strate that FreeNeRF consistently outperforms state-of-the-art methods across multiple
datasets. Moreover, some methods, like NeuralLift-360 [66], Sherf [67], and Dip-NeRF [68],
combine NeRF with additional information, such as depths, to reconstruct scenes with few
input views.

b) 6 Input Views

Figure 14. Comparison results between FreeNeRF [29] and RegNeRF [65] on the DTU [55] dataset.
Note that FreeNeRF performs better than RegNeRF on fine-grained details. Figures come from [29].

Electronics 2024, 13, 3546 15 of 26

Ground Truth RegNeRF

e ——

(b) 6 Input Views

Figure 15. Comparison results between FreeNeRF [29] and RegNeRF [65] on the LLFF [56] dataset.
Note that FreeNeRF reconstructs less-noisy occupancy fields with fewer floaters. Figures come
from [29].

Table 1. Quantitative comparison of DS-NeRF [27] with previous methods.

PSNR SSIM [62] + LPIPS [63] |
Number of 2 5 10 2 5 10 2 5 10
Input Views
DTU [55]
NeRF 99 186 221 037 072 082 062 035 026

MetaNeRF 18.2 18.8 20.2 0.60 0.61 0.67 0.40 0.41 0.35
PixelNeRF 19.3 204 21.1 0.70 0.73 0.76 0.39 0.36 0.34

DS-NeRF 16.9 20.6 22.3 0.57 0.75 0.81 0.45 0.29 0.24
Redwood-
3dscan [57]

NeRF 10.5 224 23.4 0.38 0.75 0.82 0.51 0.45 0.45

MetaNeRF 14.3 14.6 15.1 0.37 0.39 0.40 0.76 0.76 0.75
PixelNeRF 12.7 12.9 12.8 0.43 0.47 0.50 0.76 0.75 0.70

DS-NeRF 20.3 234 23.9 0.73 0.77 0.84 0.36 0.35 0.28
NeRF
Synthetic [5]
NeRF 13.5 18.2 225 0.39 0.57 0.67 0.56 0.50 0.52

MetaNeRF 13.1 13.8 14.3 0.43 0.45 0.46 0.89 0.88 0.87
PixelNeRF 18.2 22.0 24.1 0.56 0.59 0.63 0.53 0.53 0.41
DS-NeRF 20.0 22.6 24.9 0.67 0.69 0.72 0.39 0.35 0.34

Table 2. Quantitative comparison of FreeNeRF [29] with previous methods.

Full-Image PSNR 1 Full-Image SSIM [62] 1 LPIPS [63] |
Number of
Input Views 3 6 ? 3 6 ? 3 6 ?
DTU [55]

PixelNeRF 1738 21.52 21.67 0548 0.670 0.680 - - -
RegNeRF 15.33 1910 2230 0.621 0.757 0.823 - - -
FreeNeRF 18.02 2239 2420 0.680 0.779 0.833 - - -

LLFF [56]

PixelNeRF 1617 17.03 1892 0438 0473 0535 0512 0477 0.430
RegNeRF 19.08 2310 2486 0587 0.760 0.820 0336 0206 0.161
FreeNeRF 19.63 2373 2513 0612 0779 0.827 0308 0.195 0.160

4.3. NeRF with Faster Rendering Speeds

Although NeRF can achieve photorealistic view synthesis, it requires frequent evalua-
tion of the neural network at all point samples along each ray at runtime, which limits its
capability for real-time rendering applications.

SNeRG [69] precomputes and stores the trained NeRF in a sparse voxel grid with
learned feature vectors, enabling real-time rendering on commodity hardware. This method

Electronics 2024, 13, 3546

16 of 26

is 3000 times faster than the original implementation, significantly enhancing its perfor-
mance. Mobile-NeRF [30] tries to combine NeRF with the traditional polygon rasterization
pipeline to increase rendering speed. The method utilizes a set of polygons with tex-
tures representing binary opacities and feature vectors to model the scene. The output of
the rasterization pipeline is pixels representing features, which are then interpreted by a
lightweight MLP running in a GLSL fragment shader to render images. This approach
not only maintains high-quality image output but also significantly increases rendering
speed and reduces memory requirements, enabling real-time rendering on a wide range of
computing platforms, including mobile phones. The comparison results in Tables 3 and 4
demonstrate that Mobile-NeRF is around 10 times faster than SNeRG.

DIVeR [31] tries to accelerate the rendering process by using deterministic rather
than stochastic estimates of the volume rendering integral. This method involves jointly
optimizing a feature voxel grid and a decoder MLP to reconstruct the scene. Each ray from
the camera is segmented into intervals corresponding to each voxel. Components of the
volume rendering integral are decoded by an MLP for each interval to generate density
and color. As a result, DIVeR outperforms previous methods in terms of quality, especially
for thin translucent structures, while maintaining comparable rendering speed. Moreover,
Instant-NGP [32] proposes a learned parametric multiresolution hash encoding to greatly
reduce training time and uses an occupancy grid to accelerate inference speed.

Table 3. Comparison of frames per second (FPS) between Mobile-NeRF [30] and SNeRG [69].

Dataset NeRF Synthetic [5] LLFF [56] Mip-NeRF 360 [58]

Method Mobile-NeRF SNeRG Mobile-NeRF SNeRG Mobile-NeRF
iPhoneXS 55.89 - 27.19 - 22.20
Pixel 3 37.14 - 12.40 - 9.24
Surface Pro 6 77.40 - 21.51 - 19.44
Chromebook 53.67 22.62 19.44 7.85 15.28
Gaming laptop 178.26 8.30 57.72 3.63 55.32

Table 4. Quantitative comparison between Mobile-NeRF [30] and SNeRG [69].

NeRF Synthetic [5] LLFF [56] Mip-NeRF 360 [58]
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

I T { T T 4) T {

SNeRG 3038 0950 0.050 2563 0.818 0.183 - - -
Mobile-NeRF 3090 0947 0.062 2591 0.825 0.183 2195 0470 0470

4.4. NeRF with Better Generalization

The original NeRF requires several hours of training for each new scene. In contrast,
a generalizable NeRF can render multiple scenes directly using a pre-trained neural network
without the need for retraining.

IBRNet [18] synthesizes novel views of complex scenes by interpolating a sparse set
of nearby views: a common strategy in the field of image-based rendering. It employs
a neural network to learn a generic view interpolation function that generalizes to new
scenes. MVSNEeRF [70] utilizes a higher-dimensional cost volume to represent the scene,
resulting in faster processing and improved generalization. NeRFusion [33] combines the
advantages of NeRF- and TSDF-based fusion, achieving state-of-the-art quality for both
large-scale indoor scenes and small-scale object scenes. It predicts per-frame local radiance
fields from an input image sequence via direct network inference and fuses these into a
global sparse scene representation in real-time, which can be further fine-tuned. NeRFusion
outperforms baseline NeRF [5], IBRNet [18], and MVSNeRF [70] on the NeRF Synthetic [5]
and DTU [55] datasets, as shown in Table 5.

Point-NeRF [34] combines volumetric neural rendering and deep multi-view stereo
by using neural 3D point clouds to make NeRFs generalizable to new scenes. Point-NeRF

Electronics 2024, 13, 3546

17 of 26

can use the result of direct inference from a deep network pre-trained across scenes to
produce an initial neural point cloud. This neural point cloud can then be rendered with a
ray-marching-based pipeline or further fine-tuned to improve visual quality. Point-NeRF
outperforms IBRNet [18] and MVSNeRF [70] on the NeRF Synthetic [5] and DTU [55]
datasets, as shown in Figure 16.

Table 5. Quantitative comparison between NeRFusion [33] and previous methods.

Method Settings PSNR 1 SSIM LPIPS |
IBRNet NeRF Synthetic [5] 25.51 0.916 0.100
NeRFusion No per-scene optimization 25.47 0.922 0.093
NeRF NeRF Synthetic [5] 31.01 0.947 0.081
IBRNet Per-scene optimization 28.19 0.943 0.072
NeRFusion 31.25 0.953 0.069
PixelNeRF 19.31 0.789 0.382
IBRNet DTU [55] 26.04 0.917 0.190
MVSNeRF No per-scene optimization 26.63 0.931 0.168
NeRFusion 26.19 0.922 0.177
NeRF 27.01 0.902 0.263
IBRNet DTU [55] 31.35 0.956 0.131
MVSNeRF Per-scene optimization 28.50 0.933 0.179
NeRFusion 31.79 0.962 0.119

Ourszmin Ours2omin MVSNeRF z4min IBRNetin NeRF1on Reference

Figure 16. Comparison results for per-scene optimization between Point-NeRF [34] and previous
methods on the DTU [55] dataset. Note that Point-NeRF recovers texture details and geometrical
structures more accurately than other methods. Figures come from [34].

5. 3D Gaussian Splattting

Despite various improvements made by researchers to address the shortcomings of
NeRFs, the neural-network-based implicit representation still struggles to balance training
and rendering efficiency with scene reconstruction quality, limiting its further development.
To address this issue, 3D Gaussian splatting (3DGS) [6] has recently emerged; 3DGS
represents a scene as a collection of 3D Gaussians, each with its own attributes such
as position, rotation, scale, opacity, and color. Given a camera ray, the corresponding
intensity is calculated as the alpha blending result of the 3D Gaussians intersecting with
the ray. The scene is reconstructed by optimizing the attributes of 3D Gaussians so that
the rendered images match the input images. Unlike coordinate-based implicit 3D scene
representation methods like NeRF, 3DGS draws inspiration from point-based rendering
methods [71] and is a purely explicit representation. It is highly parallelized, is capable of
converging in approximately 30 min, and achieves real-time rendering at over 30 FPS at
1080p resolution. Similar to NeRF, 3DGS is used in diverse applications such as robotics,
autonomous navigation, urban mapping, and virtual/augmented reality. Since there are
already thorough survey of 3DGS-based methods [72], we will focus primarily on PBDR
and only briefly review 3DGS-based methods from three aspects for completeness. In
the following subsections, we will first briefly introduce the theory behind 3DGS. Then,

Electronics 2024, 13, 3546

18 of 26

we will successively discuss the improvements in 3DGS regarding quality enhancement,
compression and regularization, and 3D geometry reconstruction.

5.1. 3DGS Preliminaries

A scene is represented as millions of 3D anisotropic balls in 3DGS, with each modeled
using a 3D Gaussian distribution:

G(X) = ¢ MM 27)

where M € R3 is the mean position of the anisotropic ball and ¥ is the corresponding
covariance. Further, each 3D Gaussian has an opacity « and spherical harmonics parameters
ck (k is the degrees of freedom) for modeling density and view-dependent radiance for
each anisotropic ball. For regularizing optimization, the covariance matrix is further
decomposed into rotation matrix R and scaling matrix S:

¥, = RSSTRT (28)

Given the camera pose, novel view rendering is performed via point splatting to project
onto the 2D image plane. At last, for every pixel, the final pixel color can be computed by
alpha compositing the opacity and color of all the 3D Gaussians by depth order.

When comparing the performance of two 3DGS-based methods, the commonly used
datasets and visual quality assessment metrics are almost the same as those used by
NeRF-based methods, as listed in Section 4.1.

5.2. 3DGS with Quality Enhancement

Although 3DGS can render realistic images, there is still room for improving the
rendering quality. Due to the mismatch between the signal frequency and the sampling
rate, 3DGS produces aliasing when zooming in. To address this issue, Mip-Splatting [35]
first adopts a 2D Mip filter inspired by EWA-Splatting [73] to alleviate aliasing. Additionally,
Mip-Splatting also limits the sampling frequency. MS 3DGS [74] also addresses the issue of
aliasing. It proposes a multi-scale Gaussian splatting representation that selects different
scales of 3D Gaussians based on the rendering resolution level. From another perspective,
SA-GS [75] proposes a training-free method and maintains scale consistency using a 2D
scale-adaptive filter to improve the anti-aliasing performance of 3DGS; it outperforms
Mip-Splatting [35] and the original 3DGS [6], as illustrated in Figure 17.

Need training Training-free Training-free

Zoom in (8x)

Zoom out (1/8x)

PSNR:26.37 * PSNR:25.80 ~~ PSNR:29.67

GT 7 3DGS Mip-Splatting SA-GSint SA-GSsup

Figure 17. Comparison results between SA-GS [75] and previous methods under zoom-in and zoom-
out settings. Note that the rendering results of SA-GS exhibit better anti-aliasing performance and
scale consistency compared to other methods. Figures come from [75].

Electronics 2024, 13, 3546

19 of 26

Due to the poor performance of spherical harmonics for fitting high-frequency ra-
diance distributions, some works have proposed improvements based on the intrinsic
properties and rendering formula of 3DGS. GaussianShader [76] proposes a simplified
shading function on 3D Gaussians to enhance novel view synthesis results in scenes with
reflective surfaces. VDGS [36] proposes using a neural network, similar to NeRF, to model
the view-dependent radiance and opacity, thereby enhancing 3DGS’s capability to model
high-frequency information. A visual comparison between VDGS [36] and the original
3DGS [6] using the Tanks and Temples [59] and Mip-NeRF 360 [58] datasets is shown in
Figure 18.

3DGS

Figure 18. Comparison results between VDGS [36] and original 3DGS [6] on Tanks and Temples [59]
and Mip-NeRF 360 [58] datasets. Note that VDGS renders fewer artifacts in both datasets compared
to original 3DGS. Figures come from [36].

Researchers find that the spatial distribution of 3D Gaussians significantly impacts the
final rendering quality. Therefore, some works have improved the mechanisms of 3DGS
growing and pruning in vanilla 3DGS to enhance rendering quality. GaussianPro [77]
guides the densification of the 3D Gaussians with a proposed progressive propagation
strategy. RadSplat [37] develops a ray-contribution-based pruning technique to reduce
the overall point count while maintaining photo-realistic rendering quality. LightGS [78]
detects Gaussians that have minimal impact on scene reconstruction and employs a process
of pruning and recovery, thereby reducing the number of redundant Gaussians while
maintaining visual quality. To enhance the rendering quality in non-textured regions such
as walls, ceilings, and furniture surfaces, GeoGaussian [79] introduces a novel pipeline to
initialize thin Gaussians aligned with the surfaces, as shown in Figure 19, and achieves
better novel view synthesis results, as shown in Figure 20.

smooth area modified
normal . R
direction nearest
Y 1 neighb z
. I > neighbors
Y R . S >
° accumulated
+ + direction + \

D s i 11 Clone on Tangent space

‘Scales: S = [s1 s2 0.001]7 o
Rotation: R = [R1 Ra n] - X
Spherical Harmonics: C =

Opacity: a Split on Tangent space Co-planar Constraint

Parametrization of Thin Gaussians Densification Smooth Constraint

Figure 19. Pipeline from GeoGaussian [79]. A geometry-aware 3D Gaussian initialization strategy
is proposed.

Electronics 2024, 13, 3546

20 of 26

(a) 3DGS (b) LightGS (c) GeoGaussian (d) Reference

Figure 20. Comparison results for novel view synthesis between GeoGaussian [79] and previous
methods on the ICL-NUIM [60] dataset. Note that the artifacts present in the results of 3DGS and
LightGS disappear in GeoGaussian. Figures come from [79].

5.3. 3DGS with Data Compression

Despite the absolute advantages of 3DGS over NeRF-based methods in terms of
training speed and rendering speed, 3DGS requires significantly more storage space. A
vanilla NeRF representation of a typical scene requires only about 5MB, while 3DGS often
requires an order of magnitude more. Scaffold-GS [19] uses anchor points to distribute local
3D Gaussians and generates a large number of 3D Gaussians around these anchor points
to reduce the storage requirements significantly, as shown in Table 6. Many works have
made improvements based on Scaffold-GS, including the introduction of level-of-detail
strategies [80] and the use of adaptive quantization modules for further compression [81].

Table 6. Rendering FPS and storage size of Scaffold-GS [19].

Dataset Mip-NeRF 360 [58] Tanks and Temples [59] Deep Blending [82]
FPS Mem (MB) FPS Mem (MB) FPS Mem (MB)
3DGS 97 721 123 411 109 676

Scaffold-GS 102 171 (4.2x |) 110 87 (4.7x |) 139 66 (10.2x |)

Others have combined 3DGS with vector quantization: a method widely used in the
field of signal processing. EAGLES [38] quantifies implicit attributes to reduce the storage
memory of 3D Gaussians and uses a coarse-to-fine rendering resolution approach during
training to ensure rendering quality. Compact3D [39] performs vector quantization of
Gaussian parameters during the training process. By treating each Gaussian as a vector,
K-means clustering is executed to achieve compression. The resulting reduction in the
number of Gaussians is illustrated in Table 7.

Table 7. Reducing number of Gaussians using Compact3D [39].

Dataset Mip-NeRF 360 [58] Tanks and Temples [59] Deep Blending [82]
SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss
3DGS 0.813 27.42 0217 330M 0.844 23.68 0178 1.83M 0.899 29.49 0246 280M

Compact3D 0.813

27.42 0227 845K 0.844 23.71 0.188 520 K 0.905 29.73 0.249 554 K

5.4. 3DGS with Geometry Reconstruction

Since 3DGS represents scenes using discrete 3D anisotropic balls, reconstructing
explicit geometries such as meshes is not as straightforward as with physics-based differen-
tiable rendering methods. Few works have conducted preliminary explorations on how
to utilize 3DGS for geometry reconstruction. SuGaR [20] proposes a constraint term on
the scene surface to improve the geometric reconstruction effect of 3DGS and uses Poisson

Electronics 2024, 13, 3546

21 of 26

reconstruction to extract meshes. Figure 21 shows the reconstruction and scene editing
results of SuGaR.

Figure 21. Reconstruction and editing result of SuGaR [20].

Most recently, 2DGS [40] introduces 2D Gaussians to replace 3D Gaussians for scene
representation and proposes a low-pass filter to prevent 2D Gaussians from generating line
projections. However, these methods still fall short in reconstruction accuracy compared to
NeRF-based implicit methods, let alone physics-based differentiable rendering methods.

6. Discussion

Differentiable rendering acts as a crucial link between image creation and analysis,
delivering effective solutions for diverse applications in computer graphics and computer
vision due to its capability of supplying gradients for optimization. This paper categorizes
existing differentiable rendering methods based on the primary rendering algorithms
they employ. Specifically, this work reviews physics-based, NeRF-based, and 3DGS-based
differentiable rendering methods. It is noteworthy that while there are several existing
reviews for NeRF-based and 3DGS-based methods, almost no reviews for PBDR exist.
Therefore, our primary focus is on PBDR, with NeRF-based and 3DGS-based methods
covered from several aspects to ensure completeness.

In this section, we summarize advancements and suggest potential directions for
future research in physics-based, NeRF-based, and 3DGS-based differentiable rendering
methods. A comparison of and conclusions related to these three categories of methods are
presented in Section 7.

Physics-based differentiable rendering: The ultimate goal of PBDR is to reduce the
variance of the gradient estimator as much as possible within the same computation time,
allowing the inverse rendering algorithms to converge more quickly and efficiently.

For boundary sampling methods, state-of-the-art techniques have abandoned the
strategy of explicitly finding silhouette edges for a given shading point. Instead, they first
generate a path segment tangent to the geometry being differentiated, then complete it
to a full path in a bidirectional manner. To importance sample these tangent segments,
a guiding structure is built during the precomputation process. Currently, only a small
portion of the seed rays used to build this guiding structure has a positive contribution.
Thus, a new strategy is needed to build this guiding structure more efficiently. Moreover,
the parameterization used for the boundary sampling space for triangle meshes exhibits
high-frequency and sparse features, which hinder the importance sampling process. A new
parameterization scheme promising a smoother distribution needs to be developed.

For reparameterization methods, state-of-the-art techniques use a warp field to repa-
rameterize the rendering integral, ensuring that the discontinuities remain fixed in the
newly reparameterized domain as the scene parameters change. The Monte Carlo tech-
nique is used to estimate the warp field at a specific point, which requires auxiliary rays
to be emitted. This Monte Carlo technique introduces additional variance in the interior
region, and the ray tracing process for auxiliary rays is also time-consuming. To reduce the
variance and computation time for estimating the warp field, a new reparameterization
scheme needs to be developed. Ideally, this new reparameterization scheme should be
analytic so that the variance in the reparameterization step is reduced to zero.

Electronics 2024, 13, 3546

22 of 26

Boundary sampling methods have advantages over reparameterization methods,
as they produce a cleaner gradient in the interior region. This is because the Monte Carlo
process used by reparameterization methods to estimate the warp field introduces ad-
ditional variance in the interior region. The advantages of reparameterization methods
over boundary sampling methods are that they neither require precomputation nor a
guiding process before the main differentiable rendering process. Additionally, reparame-
terization methods can still produce good results in scenarios where boundary sampling
methods struggle to build an effective guiding structure, such as when an area emitter is
encapsulated within a transparent surface with low roughness.

NeRF-based differentiable rendering: Numerous technical improvements focusing
on different aspects of the original NeRF have been proposed. Since our main focus is on
PBDR, we will only review NeRF-based methods from several aspects.

The core problem for sparse-view and generalizable NeRF models is how to deduce
the missing information while avoiding overfitting to individual views. Some methods
first extract neural features from the input views and then aggregate them into the target
novel view, optionally incorporating depth or geometry regularization during the training
process. Others aim to infer a low-dimensional latent code for the scene, which is then
decoded by a hypernetwork for final shading. Combining NeRF models with large vision
models that are capable of introducing stronger scene priors, which are helpful for deducing
the missing scene information, is a promising research direction.

One major challenge for NeRF-based methods is their prolonged training and infer-
ence time. Some methods embed neural features or small MLPs into voxels or on mesh
surfaces then pair them with additional small MLPs to mitigate the catastrophic forgetting
phenomenon of MLPs, resulting in faster convergence during training. Others cache the
outputs of pre-trained networks into grids or tree structures, thereby eliminating the need
for costly network queries and accelerating the inference process. Techniques such as early
ray termination and empty space skipping are also usually adopted by these methods.
Looking ahead, an avenue worth exploring is the use of more sophisticated data structures
or more expressive neural features to enhance inference speed.

3DGS-based differentiable rendering: Like NeRF, various technical enhancements
have been proposed for the original 3DGS. Given that our primary focus is on PBDR, we
will limit our review of 3DGS-based methods to several specific aspects.

There are still several artifacts in the rendering results of 3DGS-based methods that
need to be reduced. These include aliasing, which is typically mitigated by multi-scale
approaches, and floater artifacts, which are usually addressed through filtering and pruning.
Additionally, while surface normal regularization can enhance rendering quality for scenes
with high-frequency reflections, there is still significant room for improvement.

Reducing memory usage without sacrificing too much rendering quality is also an
essential improvement for 3DGS-based methods. This will not only benefit in terms of faster
rendering speeds but will also enable quicker transmission and deployment on mobile
devices. Existing methods usually adopt the strategy of filtering or pruning insignificant
Gaussians, often followed by clustering or vector quantization to further reduce memory
storage. However, extending these methods to dynamic scenes remains an under-explored
area of research.

The problem of mesh reconstruction for 3DGS-based scene representation remains
unresolved. Existing methods often employ a regularization term to align Gaussians with
geometric surfaces, but the results still lack the precision found in NeRF-based geometry
reconstruction, let alone the accuracy achieved by physics-based geometry reconstruc-
tion techniques.

7. Conclusions

As sub-branches of differentiable rendering, all these three categories of methods
(physics-based, NeRF-based, and 3DGS-based) aim to propagate gradients from image
pixel intensities to explicit or neural scene parameters. These gradients can then be used in

Electronics 2024, 13, 3546 23 of 26

optimization algorithms to reconstruct the scene representation. The difference between
these categories of methods lies in the primary rendering algorithms used, which in turn
determine the differentiable rendering process.

The biggest difference between PBDR and the other two categories of methods is
that its primary rendering process rigorously obeys the physical laws of light transport in
the real world, whereas the processes used in NeRF-based and 3DGS-based methods are
only approximations. Thus, the inverse rendering results of PBDR are more precise than
those of the other two categories, but this comes at the cost of increased computation time.
However, current PBDR theory is still underdeveloped. Existing methods mainly focus on
the reconstruction of single objects with known emitters in purely virtual environments.
An interesting research direction is to explore how to apply PBDR to scenes with various
geometries in the real world or even in the wild, similar to how NeRF-based or 3DGS-based
methods are used.

While both NeRF-based and 3DGS-based methods use rendering algorithms based
on approximations of geometric optics, they differ significantly in form: NeRF is based on
neural representations, whereas 3DGS is based on explicit representations. Further, 3DGS-
based methods offer faster training and inference speeds compared to NeRF-based methods
while maintaining competitive rendering quality thanks to their explicit representations.
However, these explicit representations also result in a much larger memory footprint. Sur-
face extraction results from NeRF-based methods are smoother than those from 3DGS-based
methods due to a NeRF’s underlying continuous representation. Moreover, a promising
research direction is to explore how to incorporate more physics into NeRF-based and
3DGS-based methods to make them more physically correct and, consequently, achieve
better reconstruction quality.

Author Contributions: Conceptualization, R.G. and Y.Q.; methodology, R.G. and Y.Q.; software, R.G.;
validation, R.G. and Y.Q.; formal analysis, R.G.; investigation, R.G.; resources, Y.Q.; data curation,
Y.Q.; writing—original draft preparation, R.G.; writing—review and editing, Y.Q.; visualization, R.G;
supervision, Y.Q.; project administration, Y.Q.; funding acquisition,Y.Q. All authors have read and
agreed to the published version of the manuscript.

Funding: This paper is supported by the National Natural Science Foundation of China (No. 62072020)
and Leading Talents in Innovation and Entrepreneurship of Qingdao, China (19-3-2-21-zhc).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank the anonymous reviewers for their valuable suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

Azinovic, D.; Li, TM.; Kaplanyan, A.; Niessner, M. Inverse Path Tracing for Joint Material and Lighting Estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019.
Nicolet, B.; Jacobson, A.; Jakob, W. Large steps in inverse rendering of geometry. ACM Trans. Graph. 2021, 40, 248. [CrossRef]
Jensen,].N.; Hannemose, M.; Baerentzen, J.A.; Wilm, J.; Frisvad, J.R.; Dahl, A.B. Surface Reconstruction from Structured Light
Images Using Differentiable Rendering. Sensors 2021, 21, 1068. [CrossRef]

Kuldashboy, A.; Umirzakova, S.; Allaberdiev, S.; Nasimov, R.; Abdusalomov, A.; Cho, Y.I. Efficient image classification through
collaborative knowledge distillation: A novel AlexNet modification approach. Heliyon 2024, 10, €34376. [CrossRef] [PubMed]
Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron,].T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proceedings of the ECCV, Glasgow, UK, 23-28 August 2020.

Kerbl, B.; Kopanas, G.; Leimkiihler, T.; Drettakis, G. 3d gaussian splatting for real-time radiance field rendering. ACM Trans.
Graph. 2023, 42, 1-14. [CrossRef]

Chen, Z.; Chen, A.; Zhang, G.; Wang, C.; Ji, Y.; Kutulakos, K.N.; Yu,]J. A Neural Rendering Framework for Free-Viewpoint
Relighting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13-19 June 2020; pp. 5599-5610.

Ye, W.; Chen, S.; Bao, C.; Bao, H.; Pollefeys, M.; Cui, Z.; Zhang, G. IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for
Editable Novel View Synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France,
2-3 October 2023.

http://doi.org/10.1145/3478513.3480501
http://dx.doi.org/10.3390/s21041068
http://dx.doi.org/10.1016/j.heliyon.2024.e34376
http://www.ncbi.nlm.nih.gov/pubmed/39113984
http://dx.doi.org/10.1145/3592433

Electronics 2024, 13, 3546 24 of 26

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Li, TM.; Aittala, M.; Durand, F,; Lehtinen, J. Differentiable Monte Carlo ray tracing through edge sampling. ACM Trans. Graph.
2018, 37, 222. [CrossRef]

Bangaru, S.P; Li, T.M.; Durand, F. Unbiased warped-area sampling for differentiable rendering. ACM Trans. Graph. 2020, 39, 245.
[CrossRef]

Zhang, C.; Miller, B.; Yan, K.; Gkioulekas, I.; Zhao, S. Path-space differentiable rendering. ACM Trans. Graph. 2020, 39, 143.
[CrossRef]

Zhang, C.; Wu, L.; Zheng, C.; Gkioulekas, I.; Ramamoorthi, R.; Zhao, S. A differential theory of radiative transfer. ACM Trans.
Graph. 2019, 38, 227. [CrossRef]

Zhang, C.; Yu, Z.; Zhao, S. Path-space differentiable rendering of participating media. ACM Trans. Graph. 2021, 40, 76. [CrossRef]
Zhang, Z.; Roussel, N.; Jakob, W. Projective Sampling for Differentiable Rendering of Geometry. ACM Trans. Graph. 2023, 42, 212.
[CrossRef]

Loubet, G.; Holzschuch, N.; Jakob, W. Reparameterizing discontinuous integrands for differentiable rendering. ACM Trans.
Graph. 2019, 38, 228. [CrossRef]

Xu, P; Bangaru, S.; Li, TM.; Zhao, S. Warped-Area Reparameterization of Differential Path Integrals. ACM Trans. Graph. 2023,
42,213. [CrossRef]

Yang, G.W.; Zhou, W.Y,; Peng, H.Y.; Liang, D.; Mu, T.]J.; Hu, S.M. Recursive-nerf: An efficient and dynamically growing nerf.
IEEE Trans. Vis. Comput. Graph. 2022, 29, 5124-5136. [CrossRef]

Wang, Q.; Wang, Z.; Genova, K,; Srinivasan, P.P.; Zhou, H.; Barron, J.T.; Martin-Brualla, R.; Snavely, N.; Funkhouser, T. Ibrnet:
Learning multi-view image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Nashville, TN, USA, 20-25 June 2021; pp. 4690-4699.

Lu, T; Yu, M.; Xu, L.; Xiangli, Y.; Wang, L.; Lin, D.; Dai, B. Scaffold-gs: Structured 3d gaussians for view-adaptive rendering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17-21 June 2024;
pp. 20654-20664.

Guédon, A.; Lepetit, V. Sugar: Surface-aligned gaussian splatting for efficient 3d mesh reconstruction and high-quality mesh
rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
17-21 June 2024; pp. 5354-5363.

Qi, C.R; Su, H.; Mo, K; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. arXiv 2016,
arXiv:1612.00593.

Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18-23 June 2018.

Roynard, X.; Deschaud, J.E.; Goulette, F. Classification of Point Cloud Scenes with Multiscale Voxel Deep Network. arXiv 2018,
arXiv:1804.03583.

Godard, C.; Mac Aodha, O.; Brostow, G.J. Unsupervised Monocular Depth Estimation with Left-Right Consistency. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017.

Loper, M.M.; Black, M.]. OpenDR: An Approximate Differentiable Renderer. In Proceedings of the Computer Vision-ECCV 2014,
Zurich, Switzerland, 6-12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing:
Cham, Switzerland, 2014; pp. 154-169.

Kato, H.; Harada, T. Learning View Priors for Single-view 3D Reconstruction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019.

Deng, K.; Liu, A.; Zhu,].Y.; Ramanan, D. Depth-supervised nerf: Fewer views and faster training for free. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022; pp. 12882-12891.
Yu, A.; Ye, V,; Tancik, M.; Kanazawa, A. pixelNeRF: Neural Radiance Fields from One or Few Images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20-25 June 2021; pp. 4578-4587.
Yang, J.; Pavone, M.; Wang, Y. Freenerf: Improving few-shot neural rendering with free frequency regularization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17-24 June 2023; pp. 8254-8263.
Chen, Z.; Funkhouser, T.; Hedman, P.; Tagliasacchi, A. Mobilenerf: Exploiting the polygon rasterization pipeline for efficient
neural field rendering on mobile architectures. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Vancouver, BC, Canada, 17-24 June 2023; pp. 16569-16578.

Wu, L.; Lee,].Y; Bhattad, A.; Wang, Y.X.; Forsyth, D. DIVeR: Real-Time and Accurate Neural Radiance Fields with Deterministic
Integration for Volume Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), New Orleans, LA, USA, 18-24 June 2022; pp. 16200-16209.

Miiller, T.; Evans, A.; Schied, C.; Keller, A. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph. 2022, 41, 102. [CrossRef]

Zhang, X.; Bi, S.; Sunkavalli, K.; Su, H.; Xu, Z. Nerfusion: Fusing radiance fields for large-scale scene reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022;
pp. 5449-5458.

Xu, Q.; Xu, Z; Philip, J.; Bi, S.; Shu, Z.; Sunkavalli, K.; Neumann, U. Point-nerf: Point-based neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022;
pp. 5438-5448.

http://dx.doi.org/10.1145/3272127.3275109
http://dx.doi.org/10.1145/3414685.3417833
http://dx.doi.org/10.1145/3386569.3392383
http://dx.doi.org/10.1145/3355089.3356522
http://dx.doi.org/10.1145/3450626.3459782
http://dx.doi.org/10.1145/3618385
http://dx.doi.org/10.1145/3355089.3356510
http://dx.doi.org/10.1145/3618330
http://dx.doi.org/10.1109/TVCG.2022.3204608
http://dx.doi.org/10.1145/3528223.3530127

Electronics 2024, 13, 3546 25 of 26

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Yu, Z.; Chen, A.; Huang, B.; Sattler, T.; Geiger, A. Mip-Splatting: Alias-free 3D Gaussian Splatting. arXiv 2023, arXiv:2311.16493.
Malarz, D.; Smolak, W.; Tabor, J.; Tadeja, S.; Spurek, P. Gaussian Splitting Algorithm with Color and Opacity Depended on
Viewing Direction. arXiv 2023, arXiv:2312.13729.

Niemeyer, M.; Manhardt, F; Rakotosaona, M.].; Oechsle, M.; Duckworth, D.; Gosula, R.; Tateno, K.; Bates, J.; Kaeser, D.; Tombari, F.
Radsplat: Radiance field-informed gaussian splatting for robust real-time rendering with 900+ fps. arXiv 2024, arXiv:2403.13806.
Girish, S.; Gupta, K.; Shrivastava, A. Eagles: Efficient accelerated 3d gaussians with lightweight encodings. arXiv 2023,
arXiv:2312.04564.

Navaneet, K.; Meibodi, K.P.; Koohpayegani, S.A.; Pirsiavash, H. Compact3d: Compressing gaussian splat radiance field models
with vector quantization. arXiv 2023, arXiv:2311.18159.

Huang, B.; Yu, Z.; Chen, A.; Geiger, A.; Gao, S. 2d gaussian splatting for geometrically accurate radiance fields. arXiv 2024,
arXiv:2403.17888.

Yan, K.; Lassner, C.; Budge, B.; Dong, Z.; Zhao, S. Efficient estimation of boundary integrals for path-space differentiable
rendering. ACM Trans. Graph. 2022, 41, 123. [CrossRef]

Magnus, J.R.; Neudecker, H. Matrix Differential Calculus with Applications in Statistics and Econometrics; John Wiley & Sons:
Hoboken, NJ, USA, 2019.

Wang, M.; Yu, Q.; Liu, H. Three-Dimensional-Consistent Scene Inpainting via Uncertainty-Aware Neural Radiance Field.
Electronics 2024, 13, 448. [CrossRef]

Ma, L.; Li, X;; Liao, J.; Zhang, Q.; Wang, X.; Wang, J.; Sander, P.V. Deblur-nerf: Neural radiance fields from blurry images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022;
pp. 12861-12870.

Zeng, Y.; Lei,].; Feng, T.; Qin, X; Li, B.; Wang, Y.; Wang, D.; Song, J. Neural Radiance Fields-Based 3D Reconstruction of Power
Transmission Lines Using Progressive Motion Sequence Images. Sensors 2023, 23, 9537. [CrossRef] [PubMed]

Song, L.; Wang, G.; Liu, J.; Fu, Z.; Miao, Y. SC-NeRF: Self-Correcting Neural Radiance Field with Sparse Views. arXiv 2023,
arXiv:2309.05028.

Jin, P; Yu, Z. Research on 3D Visualization of Drone Scenes Based on Neural Radiance Fields. Electronics 2024, 13, 1682. [CrossRef]
Dong, B.; Chen, K; Wang, Z.; Yan, M.; Gu, J.; Sun, X. MM-NeRF: Large-Scale Scene Representation with Multi-Resolution Hash
Grid and Multi-View Priors Features. Electronics 2024, 13, 844. [CrossRef]

Wang, B.; Zhang, D.; Su, Y.; Zhang, H. Enhancing View Synthesis with Depth-Guided Neural Radiance Fields and Improved
Depth Completion. Sensors 2024, 24, 1919. [CrossRef]

Dellaert, F; Lin, Y. Neural Volume Rendering: NeRF and Beyond. arXiv 2021, arXiv:2101.05204. Available online: http:
/ /arxiv.org/abs/2101.05204 (accessed on 2 August 2024).

Xie, Y.; Takikawa, T.; Saito, S.; Litany, O.; Yan, S.; Khan, N.; Tombari, E; Tompkin, J.; sitzmann, V.; Sridhar, S. Neural Fields in
Visual Computing and beyond. Comput. Graph. Forum 2022, 41, 641-676. [CrossRef]

Tewari, A.; Thies, J.; Mildenhall, B.; Srinivasan, P.; Tretschk, E.; Yifan, W.; Lassner, C.; Sitzmann, V.; Martin-Brualla, R.; Lombardi,
S.; etal. Advances in Neural Rendering. Comput. Graph. Forum 2022, 41, 703-735. [CrossRef]

Gao, K.; Gao, Y.; He, H.; Lu, D.; Xu, L.; Li, J. NeRF: Neural Radiance Field in 3D Vision, a Comprehensive Review. arXiv 2023,
arXiv:2210.00379. Available online: http:/ /arxiv.org/abs/2210.00379 (accessed on 2 August 2024).

Tancik, M.; Srinivasan, P.; Mildenhall, B.; Fridovich-Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.; Barron, J.; Ng, R.
Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural Inf. Process. Syst. 2020,
33,7537-7547.

Jensen, R.; Dahl, A.; Vogiatzis, G.; Tola, E.; Aanaes, H. Large Scale Multi-view Stereopsis Evaluation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24-27 June 2014.

Mildenhall, B.; Srinivasan, P.P.; Ortiz-Cayon, R.; Kalantari, N.K.; Ramamoorthi, R.; Ng, R.; Kar, A. Local light field fusion:
Practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. 2019, 38, 29. [CrossRef]

Choi, S.; Zhou, Q.; Miller, S.; Koltun, V. A Large Dataset of Object Scans. arXiv 2016, arXiv:1602.02481. Available online:
http:/ /arxiv.org/abs/1602.02481 (accessed on 2 August 2024).

Barron, J.T.; Mildenhall, B.; Verbin, D.; Srinivasan, P.P.; Hedman, P. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance
Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA,
USA, 18-24 June 2022; pp. 5470-5479.

Knapitsch, A.; Park, J.; Zhou, Q.Y.; Koltun, V. Tanks and temples: Benchmarking large-scale scene reconstruction. ACM Trans.
Graph. 2017, 36, 78. [CrossRef]

Handa, A.; Whelan, T.; McDonald,].; Davison, A.J. A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May-7 June
2014; pp. 1524-1531. [CrossRef]

Dai, A.; Chang, A.X; Savva, M.; Halber, M.; Funkhouser, T.; Niessner, M. ScanNet: Richly-Annotated 3D Reconstructions of
Indoor Scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21-26 July 2017.

Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans.
Image Process. 2004, 13, 600-612. [CrossRef]

http://dx.doi.org/10.1145/3528223.3530080
http://dx.doi.org/10.3390/electronics13020448
http://dx.doi.org/10.3390/s23239537
http://www.ncbi.nlm.nih.gov/pubmed/38067910
http://dx.doi.org/10.3390/electronics13091682
http://dx.doi.org/10.3390/electronics13050844
http://dx.doi.org/10.3390/s24061919
http://arxiv.org/abs/2101.05204
http://arxiv.org/abs/2101.05204
http://dx.doi.org/10.1111/cgf.14505
http://dx.doi.org/10.1111/cgf.14507
http://arxiv.org/abs/2210.00379
http://dx.doi.org/10.1145/3306346.3322980
http://arxiv.org/abs/1602.02481
http://dx.doi.org/10.1145/3072959.3073599
http://dx.doi.org/10.1109/ICRA.2014.6907054
http://dx.doi.org/10.1109/TIP.2003.819861

Electronics 2024, 13, 3546 26 of 26

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Zhang, R.; Isola, P; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual
Metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18-23 June 2018.

Tancik, M.; Mildenhall, B.; Wang, T.; Schmidt, D.; Srinivasan, PP,; Barron,].T.; Ng, R. Learned Initializations for Optimizing
Coordinate-Based Neural Representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Nashville, TN, USA, 20-25 June 2021; pp. 2846-2855.

Niemeyer, M.; Barron, J.T.; Mildenhall, B.; Sajjadi, M.S.M.; Geiger, A.; Radwan, N. RegNeRF: Regularizing Neural Radiance
Fields for View Synthesis From Sparse Inputs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, LA, USA, 18-24 June 2022; pp. 5480-5490.

Xu, D.; Jiang, Y.; Wang, P; Fan, Z.; Wang, Y.; Wang, Z. Neurallift-360: Lifting an in-the-wild 2d photo to a 3d object with 360deg
views. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17-24 June 2023; pp. 4479-4489.

Hu, S.; Hong, F,; Pan, L.; Mei, H.; Yang, L.; Liu, Z. Sherf: Generalizable human nerf from a single image. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Paris, France, 2-6 October 2023; pp. 9352-9364.

Qin, S.; Xiao, J.; Ge, J. Dip-NeRF: Depth-Based Anti-Aliased Neural Radiance Fields. Electronics 2024, 13, 1527. [CrossRef]
Hedman, P; Srinivasan, P.P; Mildenhall, B.; Barron, J.T.; Debevec, P. Baking Neural Radiance Fields for Real-Time View
Synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada,
10-17 October 2021; pp. 5875-5884.

Chen, A.; Xu, Z.; Zhao, F,; Zhang, X.; Xiang, F,; Yu, J.; Su, H. Mvsnerf: Fast generalizable radiance field reconstruction from
multi-view stereo. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada,
11-17 October 2021; pp. 14124-14133.

Pfister, H.; Zwicker, M.; Van Baar, J.; Gross, M. Surfels: Surface elements as rendering primitives. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23-28 July 2000; pp. 335-342.
Fei, B.; Xu, J.; Zhang, R.; Zhou, Q.; Yang, W.; He, Y. 3D Gaussian Splatting as New Era: A Survey. IEEE Trans. Vis. Comput. Graph.
2024, early access. [CrossRef]

Ren, L.; Pfister, H.; Zwicker, M. Object Space EWA Surface Splatting: A Hardware Accelerated Approach to High Quality Point
Rendering. Comput. Graph. Forum 2002, 21, 461-470. [CrossRef]

Yan, Z.; Low, WE,; Chen, Y.; Lee, G.H. Multi-scale 3d gaussian splatting for anti-aliased rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17-21 June 2024; pp. 20923-20931.
Song, X.; Zheng, J.; Yuan, S.; Gao, H.a.; Zhao, J.; He, X.; Gu, W.; Zhao, H. SA-GS: Scale-Adaptive Gaussian Splatting for
Training-Free Anti-Aliasing. arXiv 2024, arXiv:2403.19615.

Jiang, Y,; Tu, J.; Liu, Y.; Gao, X,; Long, X.; Wang, W.; Ma, Y. Gaussianshader: 3d gaussian splatting with shading functions for
reflective surfaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
17-21 June 2024; pp. 5322-5332.

Cheng, K; Long, X.; Yang, K.; Yao, Y.; Yin, W.; Ma, Y.; Wang, W.; Chen, X. GaussianPro: 3D Gaussian Splatting with Progressive
Propagation. arXiv 2024, arXiv:2402.14650.

Fan, Z.; Wang, K.; Wen, K.; Zhu, Z.; Xu, D.; Wang, Z. LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction
and 200+ FPS. arXiv 2024, arXiv:2311.17245. Available online: http://arxiv.org/abs/2311.17245 (accessed on 2 August 2024).
Li, Y;; Lyu, C; Di, Y.; Zhai, G.; Lee, G.H.; Tombari, F. Geogaussian: Geometry-aware gaussian splatting for scene rendering. arXiv
2024, arXiv:2403.11324.

Ren, K;; Jiang, L.; Lu, T,; Yu, M,; Xu, L.; Ni, Z.; Dai, B. Octree-gs: Towards consistent real-time rendering with lod-structured 3d
gaussians. arXiv 2024, arXiv:2403.17898.

Chen, Y.; Wu, Q.; Cai, J.; Harandi, M.; Lin, W. HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression. arXiv
2024, arXiv:2403.14530.

Hedman, P; Philip, J.; Price, T.; Frahm,].M.; Drettakis, G.; Brostow, G. Deep blending for free-viewpoint image-based rendering.
ACM Trans. Graph. 2018, 37, 257. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics13081527
http://dx.doi.org/10.1109/TVCG.2024.3397828
http://dx.doi.org/10.1111/1467-8659.00606
http://arxiv.org/abs/2311.17245
http://dx.doi.org/10.1145/3272127.3275084

	Introduction
	Algorithms
	Physics-Based Differentiable Rendering
	Physics-Based Rendering Preliminaries
	Boundary Sampling Methods
	Reparameterization Methods

	Neural Radiance Field
	NeRF Preliminaries
	NeRF with Lower Acquisition Costs
	NeRF with Faster Rendering Speeds
	NeRF with Better Generalization

	3D Gaussian Splattting
	3DGS Preliminaries
	3DGS with Quality Enhancement
	3DGS with Data Compression
	3DGS with Geometry Reconstruction

	Discussion
	Conclusions
	References

